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Abstract

Background: Long-QT syndrome type 2 (LQT2) is a common malignant hereditary arrhythmia. Due to the lack of
suitable animal and human models, the pathogenesis of LQT2 caused by human ether-a-go-go-related gene (hERG)
deficiency is still unclear. In this study, we generated an hERG-deficient human cardiomyocyte (CM) model that
simulates ‘human homozygous hERG mutations’ to explore the underlying impact of hERG dysfunction and the
genotype—phenotype relationship of hERG deficiency.

Methods: The KCNH2 was knocked out in the human embryonic stem cell (hESC) HO line using the CRISPR/Cas9
system. Using a chemically defined differentiation protocol, we obtained and verified hERG-deficient CMs.
Subsequently, high-throughput microelectrode array (MEA) assays and drug interventions were performed to
characterise the electrophysiological signatures of hERG-deficient cell lines.

Results: Our results showed that KCNH2 knockout did not affect the pluripotency or differentiation efficiency of H9
cells. Using high-throughput MEA assays, we found that the electric field potential duration and action potential
duration of hERG-deficient CMs were significantly longer than those of normal CMs. The hERG-deficient lines also
exhibited irregular rhythm and some early afterdepolarisations. Moreover, we used the hERG-deficient human CM
model to evaluate the potency of agents (nifedipine and magnesium chloride) that may ameliorate the phenotype.

Conclusions: We established an hERG-deficient human CM model that exhibited QT prolongation, irregular rhythm
and sensitivity to other ion channel blockers. This model serves as an important tool that can aid in understanding
the fundamental impact of hERG dysfunction, elucidate the genotype-phenotype relationship of hERG deficiency
and facilitate drug development.
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Background

The KCNH2 encodes the voltage-gated K* channel «
subunit, Kv11.1, which is known as the human ether-a-
go-go-related gene (hERG) [1]. The hERG channel
constitutes a rapidly activated delayed rectifier K channel
(IKr) in the heart [2] and is responsible for myocardial cell
repolarisation when the cardiac action potential ends [3].
Previous evidence shows that KCNH2 mutations are asso-
ciated with hereditary long-QT syndrome type 2 (LQT2)
[4]. The prevalence of LQT2 accounts for 25-40% of all
long-QT syndrome (LQTS) types and is one of the most
common inherited arrhythmias [5]. Generally, LQT2 has
the characteristics of a prolonged QT interval and action
potential duration (APD), which predispose patients to
torsade de pointes, a type of polymorphic ventricular
tachycardia and sudden cardiac death [6-8].

In most studies, to better understand the pathogenesis,
the establishment of models that reveal disease mecha-
nisms is crucial. Surprisingly, to date, although human
homozygous hERG mutations have been reported, an
appropriate model of human hERG deficiency has not
been established. Transgenic mice expressing an hERG
dominant-negative construct exhibited mild APD pro-
longation in individual myocytes, but QT prolongation
was not observed in intact animals [9]. Targeted disrup-
tion of Ergla in mice led to a homozygous embryonic
lethal phenotype, whereas heterozygotes showed slight
QT prolongation [10]. Since previous models failed to
reproduce the disease phenotype, we should consider
that the human heart is distinctly different from the
murine heart. Mice have a faster heart rate (500-700
bpm) than humans, which represents different action
potentials and repolarising K* currents. In mice, the
dominant cardiac repolarisation K currents are fast and
slow transient outward currents and delayed rectifier
voltage-gated K* currents (IK, slowl and IK, slow2),
while the role of IKr is minimal [11-13]. Thus, the need
to establish an hERG-deficient model to determine the
pathological mechanism of this disease is urgent.

Recently, cardiomyocytes (CMs) derived from human
embryonic stem cells (hESCs)/human pluripotent stem
cells (hPSCs) have been used for modelling various her-
editary cardiomyopathies [14, 15]. Numerous studies
have shown that hESC and hPSC have high similarity
[16—-18]. LQTS was one of the first cardiac diseases that
was recapitulated in hPSC models [19]. To date, cell
models derived from LQTS mutation carriers have been
widely used in mechanistic studies and for drug screen-
ing [20-22]. However, cell lines from different individ-
uals contain additional genetic variants, which may limit
the observation of genotype—phenotype relationships.
Furthermore, there are several hERG heterozygous
mutations, diverse phenotype of loss-of-function and
different mutation mechanisms [23-25], which makes
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the research on the pathological mechanisms of hERG
functional dysfunction more complicated. Furthermore,
in individuals with heterozygous mutations, the presence
of wild-type (WT) alleles may affect repolarisation. In
cases that were heterozygous for R176W in 293 T cells,
hERG tail current density was reduced by ~75% [26].
Nevertheless, in hPSC-CMs from a heterozygous R176 W
individual, a ~ 43% decrease in IKr density was observed
[27]. The reasons for this observed discrepancy in cases
with the same mutation are unknown but may involve
the differential expression of WT and mutant alleles.
Therefore, an appropriate hERG-deficient model, rather
than mutation-based models, is desperately needed
to determine the well-defined genotype—phenotype
correspondence.

Here, we generated an hERG-deficient human CM
model using the CRISPR/Cas9 system. After differenti-
ation into CMs and characterisation by electrophysiology
and drug intervention, the cell lines exhibited QT pro-
longation, irregular rhythm, early afterdepolarisation
(EAD) occurrence and IKr current insensitivity. Addition-
ally, nifedipine and magnesium chloride (MgCl,) could
reverse the observed phenotype. Therefore, this model is
appropriate for elucidating the pathogenesis of hRERG dys-
function, defining genotype—phenotype correspondence
and facilitating drug development.

Methods

Cell culture and cardiac differentiation

The human embryonic stem cell-H9 line (hESC-H9;
provided by WiCell Institute Inc., Madison, W1, USA)/
human pluripotent stem cell (hPSC, provided by Cellapy:
CA1002008, Beijing, China) and the derived cells were
cultured primarily in' E8 medium (Cellapy, China). The
cells were passaged with 0.5-mM EDTA-PBS solution
(Cellapy) when the cells reached 80% confluence. CM
differentiation was carried out using small molecule-
based methods [28]. When spontaneous beating was
obvious, hESC-CMs were purified by the lactic acid
metabolism selection method [29].

Genome editing

KCNH?2 single-stranded guide RNA (sgRNA) (GCATCG
ACATGAACGCG) was designed using an online tool
(http://crispr.mit.edu/). We electroporated the epiCRISPR
vector and sgRNA (100-pl electrotransformation solution
(Cellapy) plus 2.5-ug KCNH2 gRNA plasmid) into the
cells using the 4D nuclear receptor system and the CA137
programme (Lonza, Germany). The transfected cells were
seeded in 6-well plates and cultured overnight in E8
medium containing 10 uM of Rho kinase inhibitor Y-
27632. The medium was changed the next day. Drug
(puromycin) selection was initiated after 72 h of transfec-
tion at a lower concentration of 0.1 pg/ml for the first
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hour and then at 0.3 pg/ml until the transfected lines were
stable. The surviving cells were collected in 48-well plates
and amplified for polymerase chain reaction (PCR)
screening.

Western blot

Cells were rinsed in PBS (Corning, USA) and harvested
in a CardioEasy CM dissociation buffer (Cellapy). The
cells were then rinsed again in PBS and pelleted by
centrifugation twice at 1200 rpm for 5min each time.
After removing the supernatant, SDS-PAGE protein-
loading buffer (Beyotime, China) was added, and the
cells were lysed by sonication and heat-denatured.
According to the molecular weight of the protein, we
configured a 10% separation gel and a 4% concentration
gel for electrophoresis and performed gel transfer to a
polyvinylidene difluoride membrane using a gel transfer
device (Bio-Rad) over 120 min. Then, we blocked the
membrane with 5% skimmed milk for 1h at room
temperature. The membrane was incubated with the
primary antibody overnight at 4 °C, followed by incubation
with the secondary antibody for 2 h at room temperature.

Immunofluorescence

Cells were seeded in 24-well plates, fixed with 4% parafor-
maldehyde (PFA) (Solarbio, China) for 10 min, permeabi-
lised with 0.5% Triton X-100 (Sigma, USA) for 15 min and
blocked with 3% BSA (Sigma) at room temperature for 30
min. The cells were incubated with the prepared primary
antibody overnight at 4°C. The following day, the cells
were rinsed three times in 1x PBS for 5min each time.
The cells were incubated with the secondary antibody at
room temperature in the dark for 2h and then rinsed
three times in 1x PBS for 5 min each time. Data were col-
lected using a confocal microscope (Leica DMI 4000B).

RNA extraction and quantitative reverse transcription PCR
(gqRT-PCR)

Total cellular RNA was extracted with TRIzol (Invitro-
gen, USA) and treated with DNase I (Beyotime, China)
for approximately 30 min at 37°C to eliminate DNA
contamination. RNA was reverse transcribed using the
Prime-Script™ reverse transcription system (TaKaRa,
Japan). Relative gene expression levels were examined by
qRT-PCR using the iCycler iQ5 (Bio-Rad, USA) with TB
Green"Premix Ex Taq"II (Takara). The relative quantifi-
cation was calculated according to the »CT method. All
primer sequences are listed in Table S1.

Flow cytometry

CMs were dissociated into a single cell suspension in a
CardioEasy CM dissociation buffer. Cells were then
rinsed in PBS, fixed in 4% PFA for 10 min and permeabi-
lised in 0.5% Triton X-100 for 15min. The primary
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antibody was applied for 60 min, followed by incubation
with the secondary antibody for 30min at room
temperature. The samples were then rinsed in PBS and
assessed using FACS analysis (EPICS XL, Beckman).

Microelectrode array (MEA) analysis

CMs were digested in a CardioEasy CM dissociation
buffer, after which 2 x 10* cells were plated on a micro-
electrode array (MEA) pre-coated with 5% Matrigel
(Cellapy). The next day, 300-pl medium was added to
each well. After the CMs resumed spontaneous beating,
the experimental data were recorded on a Maestro
EDGE (Axion Biosystems, Inc., Atlanta, USA) according
to the MEA manual. Cardiac Analysis Tool, AXIS Navi-
gator, AxIS data export tool and Origin were used to
analyse the data.

Data analysis and statistics

All experiments were repeated at least 3 times with
duplicate samples. All data are displayed as the mean +
standard error of mean. Two-sided Student’s ¢ test and
one-way ANOVA were used to determine statistical
significance, and P <0.05 was considered statistically
significant.

Results

Establishment of homozygous hERG-deficient hESCs

We established an hERG-deficient cell model from the
hESC-H9 cell line using the CRISPR/Cas9 system [30].
First, we designed a highly specific sgRNA to target the
KCNH?2. Next, hESC-H9 cells were subjected to electro-
poration with a plasmid containing sgRNA and Cas9,
followed by puromycin screening. To assess the editing
features of cell colonies, we analysed colonies using PCR
and Sanger sequencing. Finally, we selected homozygous
(biallelic mutations) colonies with - 2bp and -8bp
(Fig. 1a). In addition, to determine whether KCNH2
knockout played the same role in different stem cell
lines, we also established a KCNH2'"hPSC cell line
using the same method (data not shown). The
KCNH2™'~ colonies exhibited normal morphology
(Fig. S1A). In addition, we found that KCNH2™'~ lines
expressed the pluripotency markers OCT4 and SSEA4
(Fig. 1b). Similarly, gene expression analysis confirmed
the expression of pluripotency genes (NANOG, SOX2,
DPPA4 and REXI) (Fig. 1c). KCNH2'~ lines also had
a normal karyotype (Fig. 1d). A teratoma formation
assay revealed that KCNH2 '~ cell lines exhibited
stem cell properties (Fig. S1A).

hERG-deficient hESCs can differentiate into CMs

Since the hERG channel protein is primarily expressed
on CMs, we used small molecules with clear chemical
compositions to induce the differentiation of stem cells
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Fig. 1 hERG deficiency did not affect the pluripotency of hESCs. a Pattern diagram of KCNH2 knockout demonstrating the genic positions of
their editing sites. b Pluripotency markers SSEA4 and OCT4 of cell lines immunofluorescent staining. Scale bar = 25 um. ¢ gRT-PCR analysis of
pluripotency-related genes in WT and KCNH2 ™. d Karyotype analysis revealed a normal karyotype of 46 chromosomes in KCNH2 ™/~

into CMs (Fig. 2a); 60-day-old cells were used for west-
ern blot, which confirmed the depletion of the hERG
protein (Fig. 2b). To further probe the relevance of
hERG in heart development, 30-day-old CMs were
stained for troponin T (TNNT2) and «-actinin (Fig. 2c).
Next, flow cytometry showed that both WT and
KCNH2”~ CMs (KO) were nearly 85% TNNT2-positive
(Fig. 2d, e). Additionally, we performed double immuno-
staining for MYL2 and MYL7 and revealed no significant
changes in CM subsets (Fig. 2f, g). These results were
consistent with those of a previous study [31]. Taken

together, we demonstrated that hERG deficiency did not
impact on myocardial differentiation.

Responses to hERG blockers

To determine the functions of an hERG-deficient model,
the effect of two selective ion channel blockers on spon-
taneous field potential duration (FPD) was tested. E-
4031 (100 nM) [31, 32] treatment caused prolongation in
FPD in control CMs (n = 24), which demonstrated the
presence of functional hERG channels. Moreover, treat-
ment of WT cells with increasing concentrations of E-
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Fig. 2 hERG deficiency did not affect the differentiation of hESC-CMs. a Schematic illustration of hESCs in vitro differentiation protocols using

small molecule-based methods. b The hERG expression assessed by western blotting analysis. ¢ Immunofluorescence staining of cardiomyogenic
25um. d, e Flow cytometry analyses of CMs marker TNNT2 expression at days 15 without
purification. f, g Immunostaining for the protein expression of MLC2v and MLC2a in WT and KOs. Scale bar =

25 um. Data are expressed as means

4031 induced a dose-dependent increase in FPD (Fig. 3c,
e). In contrast, the KO (n = 24) exhibited insensitivity to
different concentrations of E-4031 (Fig. 3d, f). Similar re-
sults were obtained with another hERG channel blocker,
Dofetilide [33]. The KO exhibited almost no reaction,
even with an extended reaction time (Fig. 3g—j). This
was expected as E-4031 and Dofetilide act primarily on
the IKr current, and this current is absent in hERG-
deficient CMs. These results demonstrated that we
successfully generated an hERG dysfunction model.

Irregular rhythm and EAD occurrence
Previous studies showed that KCNH2 loss-of-function
mutations cause LQT2, whereas irregular rhythm and

EADs are precursors of ventricular arrhythmias in LQTS
[34]. We detected differences in hERG-deficient lines at
the multicellular level by high-throughput MEA analysis
[35] (Fig. S1C). The results implied that hERG-deficient
lines (n = 5/24) are more prone to irregular rhythm
(Fig. 4b, e). Importantly, hRERG-deficient lines displayed
significant EADs (2/24) (Fig. 4d, f). EAD is a spontan-
eous membrane depolarisation, and when membrane
potential depolarisation reaches a threshold, EAD may
trigger action potentials prematurely and cause
arrhythmia [19, 36]. Conversely, control CMs (1 = 24) ex-
hibited no EADs or any other arrhythmogenic activities
(Fig. 44, c). To assess the sensitivity of the hERG-deficient
lines to neurohormonal regulation [37], we administered
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Fig. 3 KCNH2 deletion led to the loss of hERG function. a, b Schematic diagrams of FPD and APD by MEA processing. ¢, d The signals of FPD on

different concentrations of E-4031 recorded in WT and KOs. e, f Quantification of FPD. n = 3 independent experiments, unpaired ¢ test. g, h

Signals of FPD on different concentrations of dofetilide recorded in WT and KOs. i, j Quantification of FPD. n = 3 independent experiments,
unpaired t test. P < 0.05 was considered statistically significant (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001)

A

the adrenergic beta-agonist isoproterenol (ISO). The shortened FPD (Fig. S2C) with increasing drug con-
results revealed that ISO exhibited positive chronotro-  centrations. Overall, in vitro, the hERG-deficient
pic action. We observed increased beating frequency model reproduced important electrophysiological
(Fig. S2A, B), enhanced spike amplitude (Fig. S2D) and  changes that cause ventricular arrhythmia.
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Fig. 4 hERG deficiency led to irregular rhythm and EAD. a, b Representative traces of irregular rhythm were recorded in hERG deficiency. ¢, d
Representative traces of EAD in FPD. The abnormal signals are labelled with blue arrows. e, f Quantification of b and d

Baseline MEA electrophysiology

To evaluate the baseline electrophysiological measure-
ments of the hERG-deficient model, we selected prelim-
inary mature CMs on day 30 and mature CMs on day
60 for separate testing [38]. Based on the recorded extra-
cellular electrograms and FPD data analysis, we
concluded that the FPD in hERG-deficient lines (z = 24)
was longer than that in the control (n = 24) in hESC-
CMs (Fig. 5a—c). To identify the baseline value of the
hERG-deficient lines more precisely, we used the cell-
beating frequency to normalise the FPD to obtain the
corrected FPD (FPDc), which was analogous to the
corrective QT interval in the ECG (Fig. 5d). Likewise,

the results showed marked APD prolongation in hERG-
deficient hRESC-CMs compared with controls (Fig. 5e—g).
Moreover, the same hERG-deficient CMs derived from
hPSC showed characteristically prolonged FPD and APD
properties (data not shown). The above experimental
results demonstrated that the hERG-deficient model ex-
hibited obvious QT prolongation electrophysiological
characteristics.

Responses to other ion channel blockers

To further characterise the pharmacology of the hERG-
deficient model, we assessed cell sensitivity to other ion
channel blockers. We first tested nifedipine, a potent
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significant (*P < 0.05, **P < 0.01, ***P < 0.001, ***P < 0.0001)

dihydropyridine L-type calcium channel blocker [39]. MgCl, for the clinical treatment of LQTS [40], and the
Nifedipine resulted in a substantial reduction in FPD  results indicated that MgCl, failed to shorten the QT
with 10 nM or 100 nM dosages (Fig. 6a). We then tested interval but reduced the EAD development (Fig. 6b).
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Overall, the hERG-deficient model can be used to screen
other ion channel drugs to improve the abnormal

phenotype.

Discussion

In this study, we generated a complete hERG -deficient
model to characterise the pathogenesis of LQT2 and its
important phenotypes in vitro. Crucially, the hERG-
deficient model reproduced pronounced QT prolongation
and rhythm disorders. Moreover, our results indicated
that other ion channel blockers can partially correct ab-
normal phenotype. Our model provides an important
platform for understanding the fundamental pathogenesis
of hERG dysfunction, for defining genotype—phenotype
correspondence and promoting drug development.

Three reports of human homozygous hERG mutations
have been published, and all cases were related to severe
LQTS and even embryonic lethality in infants [41-43].
Some homozygous carriers died in utero, while the ones
that survived had severe cardiac electrophysiological dis-
orders. This is of high interest because the same muta-
tion led to different results. One possible hypothesis
suggested by these cases is that in vivo even homozygous
mutations with serious phenotypes are influenced by
additional unknown factors. However, to date, the
pathological mechanism of the complete deficiency of
hERG is still unclear, and the appropriate methods or
models for the study are unavailable. In cases of homo-
zygous hERG mutations, the loss of functional IKr corre-
sponds to ‘human hERG knockout’. Thus, we established



Chang et al. Stem Cell Research & Therapy (2021) 12:278

an in vitro hERG-hESC-derived CM model to explore
the pathological mechanism of the hERG deficiency.
One advantage of our model over others was that CMs
derived from hESCs and hPSCs reproduced cardiac
repolarisation that was strictly controlled by various
internal and external ionic currents [44], whereas non-
cardiac cell models cannot fully simulate these subtle
changes [45]. hESC and hPSC provide a valuable experi-
mental platform for studying ion channel diseases [46].
Although hESC and hPSC are essentially different, such
as they are derived from disparate sources, there is con-
siderable consensus regarding the functional similarity of
hESC and hPSC [47, 48]. Our data demonstrated that
we were able to successfully establish an hERG-deficient
hESC-derived CM model using CRISPR/Cas9. Further
functional studies were also performed. E-4031 and
Dofetilide are the most common selective IKr inhibitors
[37]. Expectedly, cell lines with hERG deficiency were
less sensitive to E-4031 than control cells. Dofetilide
sensitivity was similar in the hERG-deficient model. The
establishment of this hERG-deficient model was further
supported by drug intervention. Importantly, this in vitro
hERG-deficient model may facilitate the understanding of
severe LQTS in foetuses.

KCNH?2 is expressed abundantly in CMs where it
participates in electrophysiological activities [2];
however, hERG is not believed to be involved in cardiac
development [41]. In our study, the CM differentiation
capacities of hERG-deficient lines were similar to those
of the control. Additionally, no differences in myocardial
subtype or myocardial structure were observed. These
results agree with previous studies that reported that in
humans with hERG homozygous mutations, the heart
was structurally normal on echocardiography, with
moderate  ventricular  function. Experiments  of
catecholamine-induced stress showed that an hERG-
deficient cell line had a normal neurohormonal re-
sponse. Most currents experience developmental matur-
ation in cardiomyocytes. Generally, the QTc interval
increases with age [49], and hESC-derived CMs mature
over time during in vitro differentiation as they move to-
wards an adult phenotype [50]. Consequently, our exper-
iments included early mature (day 30) and late mature
(day 60) CMs. As the CMs matured, the FPD, FPDc and
APD on day 60 were longer than those on day 30 in
both control and hERG-deficient cells.

KCNH2 mutations induce hERG dysfunction, which
decreases the IKr current and delayed repolarisation. QT
prolongation is one of the most important phenotypes.
The Schwartz scoring system, which is used for clinical
LQTS diagnosis, stipulates that a 460-470 ms QT inter-
val represents medium risk, whereas 480 ms or more in-
dicates a high risk [51]. Our results demonstrate that
compared with the control, the FPD, FPDc and APD of
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the hERG-deficient model were significantly longer.
However, these values in hERG-deficient cells were
shorter than those reported in other LQT2 hPSC models
and clinical values. One reason for this difference may
be the inclusion of different cell lines. The cells were de-
rived from different sources, and electrophysiological
variability may have been increased by their distinct gen-
etic backgrounds as well as the involvement of other
genes in the regulation of electrophysiological activity
[31]. Different studies in the past reported the same
point mutation A164V in the pore region, and the
difference between APD70 and APD90 of the Al64V
hPSC-CM from different patients was more than 200 ms
[19, 20]. These results also reflected that the functional
changes in point mutations are unstable and difficult to
standardise. Moreover, we used MEA analysis to detect
electrophysiological activity at the multicellular level
[26]. Compared with patch-clamp, the contact between
cells in syncytium may result in other ion repolarisation
compensation mechanisms to protect the abnormal mi-
lieu from serious deviation. Another important consider-
ation is the beat times of hESC-derived CMs, which
generally range from 30 to 40 in vitro [19]. This is lower
than the normal adult heart rate. Therefore, FPDc is
much shorter than FPD.

Since our study compared different hERG statuses in
the same system, an unambiguous genotype—phenotype
relationship was ascertained. Many pathological
mechanisms of heterozygous point mutations have been
investigated [4], but the role of WT alleles in cases of
heterozygous mutations is still unclear. Furthermore,
their studies have not yet been stated clearly the mech-
anism of complete hERG deletion. hERG1b, a subunit
that interacts with hERG (hERG1a), accounts for 19% of
the total hERG gene expression in the right atrium and
12% in the left ventricle. Due to the unique ‘RXR’ endo-
plasmic reticulum retention signal at the hERG1b N-
terminus, it cannot be expressed on the membrane alone
[52]. Using the masking effect of hERG1a, an hERG1a/
hERGI1b composite channel is formed to complete the
normal membrane deposition and effectively produce a
stronger repolarisation current than the hERGla com-
plex alone. For this reason, the normal WT allele in
cases with heterozygous mutations may also contribute
to repolarisation. Thus, homozygous hERG deficiency is
a more explicit and representative genotype—phenotype
model for research. The overriding point in this aspect is
that the hERG knockout model was easy to obtain and
that the functional changes in hERG-deficient cell lines
were more stable than that of point mutations. In
addition, it also covered the functional changes in all
mutations, which is a suitable model for studying QT
prolongation and irregular rhythms. Furthermore, we
captured irregular rhythms in this hERG-deficient
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model. Concomitantly, EAD also appeared. This is
roughly analogous to the 2:1 atrioventricular block that
occurs in homozygous hERG patients. Using the
deficiency model, we also conducted pharmacological
studies. We selected two drugs to treat homozygous
hERG probands: Nifedipine and MgCl,. Our results
showed that both 10-nM and 100-nM Nifedipine sub-
stantially shortened the QT interval. While MgCl, failed
to change the QT interval, it reduced the appearance of
EADs. This is consistent with previous reports that
stated that MgCl, suppressed depolarisation-induced
automaticity when APD was fixed [53].

Conclusions

In summary, we generated an hERG-deficient in vitro
model using CRISPR/Cas9. The model exhibited marked
QT prolongation, arrhythmia and sensitivity to other ion
channel blockers and serves as an important tool to
increase our understanding of the fundamental pathological
mechanism of hERG dysfunction, define genotype—pheno-
type correspondence and facilitate drug development.
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